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EVOLUTIONARY OPTIMAL CONTROL 
 
Evolutionary approach to the numerical solving of multi-dimensional procedural optimal control 
problems with respect to arbitrary representation of plant model and constraints is considered in this 
paper. New genetic algorithm with variable control programs length is proposed and its 
characteristics are investigated while solving the test problem.  
 

Introduction. Simulated natural evolution being applied to the multi-parameter and multi-
objective global optimisation problems have already resulted in a well established group of so-
called evolutionary algorithms [1, 2]. At the same time, constantly increasing computational power 
of the microprocessors significantly widens areas of application for such algorithms. In recent 
years, genetic algorithms have been successfully applied to several control problems, such as non-
linear model structural identification [3], system identification [4], and controller parameters 
optimization [5]. Apart from that, application of conventional genetic algorithms to predictive 
control with fixed prediction horizon (PH) has been in active development during the last decade [6, 
7]. Conventional genetic algorithm being applied to the model prediction based direct control 
utilizes encoding of optimisation parameters into a fixed length binary representation, which 
naturally fixes the PH distance and results in fundamentally sub-optimal control functions. In 
addition to that, using fixed PH it is impossible to detect in advance the case of non-existing 
solution. In order to overcome the mentioned above problems, new variable length genetic 
algorithm (VLGA) is proposed and studied in this paper, which could be applied to the direct 
procedural control, thus delivering fundamentally optimal solutions. Such an application requires 
both proper control functions encoding and specially developed fitness functions formulations, 
which will successfully solve multi-objective optimisation of the procedural direct control. 

Goals and motivations. Taking into considerations model and constraints complexity level, 
possible applications of the procedural optimal control approach can be represented in a form of a 
“bubble diagram” shown in the figure 1. The darker area in the diagram reflects higher efficiency of 
the approach in solving corresponding problems. One should also note that the classic control 
approaches as well as fuzzy logic don’t deliver fundamentally optimal control in terms of a given 
criterion. The main goal of the research is to develop and study algorithms able to solve the optimal 
control problems with respect to the arbitrary complexity level of both process model and 
constraints representation, thus overcoming limitations of the conventional control methodologies. 
At the same time, considering the exponential growth of the computational power of modern 
processors some novel and pure algorithmic approaches are reckoned to be feasible and highly 
efficient in solving the optimal control problems even under conditions of real-world applications. 
Such algorithms must apparently have certain features that would make them advantageous in 
comparison with the existing methods in system optimal control: 
 The only requirement to the mathematical model is that it must be able to adequately predict 

the system state with respect to the given control functions. No special constraints in terms of 
its linearity or mathematical simplicity are required whatsoever. 

 Control algorithms must be able to efficiently readjust to system parameters variations. 
 More control functions are considered as admissible that could lead to more optimal results. 
 Straightforward treatment of optimization criteria and control constraints that could be given 

in an arbitrary form.  
The latter would also allow the control algorithm to explicitly solve the path-planning problem 

with respect to the plant dynamics and arbitrary obstacle configuration. There are two major groups 
of algorithms that could be used either separately or combined to solve the optimal control 
problems: 
 States traversing techniques 
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 Evolutionary programming. 
First group includes Dijkstra’s algorithm [8] and A-star with all of its modifications [9-10]. 

The second one refers mainly to the genetic algorithms both with fixed and variable “chromosome” 
length [11]. The latter variable length genetic algorithm has several specific features that make it 
advantageous in solving optimal direct control problems.  

Optimal control problem. Formulation of general optimal control problem is well known 
and here we shall give emphasis only to the aspects that are essential to the subject. Let the state of 
the system at time t  be a vector )}(),...,({)( 1 txtxtx n


 in an n-dimensional Euclidean space which 

we shall call the state space X . The steering device or control we model as an m-dimensional 

vector function of time )}(),...,({)( 1 tututu m


. The components of  )(tu


 are allowed to be 

piecewise continuous and the values they can take are bounded so that at any time t , )(tu


 lies in 

some bounded region U of the control space. Without loss of generality we impose the restriction 

1iu , mi ,...,1 . Such controls are deemed admissible in terms of the considered algorithms. We 

shall study systems whose behaviour can be modelled by the most general state transfer function F  
that calculates state of the system given its current state and control vectors: 

 )(),()( tutxFttx


 . (1) 

Function F  here is assumed to be defined for all Xx


 and all admissible u


. 
This approach to system representation significantly expands number of systems that could be 
successfully controlled compared to the conventional systems representation via systems of either 
ordinary or non-linear differential equations. We now wish to control the system from the initial 
state )( 0tx


 to the given final state )( 1tx


 while minimizing some cost function. This function could 

be also given in a form of a conventional cost functional  

 
1

0

)(),()( 010

t

t

dttutxfxxJ


. (2) 

We are, of course, assuming that there are admissible controls that transfer the system from )( 0tx


 to 

)( 1tx


 and we are looking amongst this subset of admissible controls for a control that minimizes 

cost function J . Although the cost function (2) is given in a conventional form of a functional, it is 
not required by the nature of control algorithms under consideration. In fact, any cost function 
perfectly suits the most of the algorithms.  

System transition in state-space. Let us assume that every component of the control vector 

)}(),...,({)( 1 tututu m


 can take a value only from the given set of constant values: 

},...,{ 00
1

0
puuu 


. (3) 

In this case control vector )(tu


 has pms   different possible constant values 00
1 ,...,)( suutu


 .  

Application of the piecewise constant control )( ii tuu


  to the system at the current state )( ii txx


  

can result therefore in s  new states at the every subsequent instant of time ttt ii 1 . In terms of 

the optimal control problem formulated earlier, we are searching for the finite sequence of v control 

inputs )(tui


 that transfers the system from its initial state 0x


 to the goal state gx


. Each of the 

control iu


 is assumed to be acting on the system and remained constant within the time interval t . 

Such a limitation causes the found solution to be a sub-optimal rather than optimal, to which it 
tends when 0t . 

Control function encoding. There are many forms of solution representation that could be 
successfully used control algorithms. The simplest one is an array, where each component is an 

integer index of a particular component of the control values vector },...,{ 00
1

0
puuu 


: 

},,{ 1 vbbB  ,  ],,1[ pbi  , (4) 

where p  is the number of possible values for the control, v  is the number of subsequent constant 

control inputs to the system. Here and after this controls array is referred to as control program, 
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since each component of the array (4) can be considered as an instruction from the given instruction 
set (3). For the multidimensional control (m>1), instructions for every component of the control 
vector )}(),...,({)( 1 tututu m


 are taken from the program (4) consecutively. If the number v is not a 

multiplier of m, some predefined default instruction is used. In case of the control program (4), the 
system is subjected to the piecewise constant control input completely defined by application of a 
control program  

0)(
kbi utku  ,  ],,1[ vk  , (5) 

during the period of time tv  . One should note that the piecewise constant control (5) is the 
simplest but not the only possible interpretation of a control program instructions. Both higher order 
function approximation and Boolean controls can be successfully parameterised using the integer 
values from the array (4) as well.   

Algorithms operation. In a sense, the algorithmic optimal control is the form of a model 
predictive control, since it uses the model of a process or a plant to predict the effect of the 
suggested control function. Generalised schematic representation of the algorithms operation as a 
part of the control system is shown in the figure 2. 
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Fig. 1. Procedural control fields of application Fig. 2. Algorithms operation scheme 
 

Here gx


 is the goal state of the plant, x


 is the state, which is predicted by the model, x


 is the 

actually measured stated of the plant, u


 and u


 are the suggested and the best found controls 
respectively. System representation error e


 is used to adjust the model accordingly. The algorithm 

heavily uses the model to predict the plant state while searching for the acceptable control that 

would transfer it to the desired goal state gx


. As soon as an acceptable control function is found, it 

is used to control the plant, while adjusting the model parameters comparing the predicted and its 
actual state. For some algorithms the searching process can continue and would most probably 
result in improved control function, which could be then used instead of the one found earlier. 

There are three clearly distinctive modes for the algorithms operation as follows: 
 Search for the control function (off-line operation, no control applied to the system). 
 Application the control function to the system (on-line operation, system is under control, 

model is verified, control function is improving). 
 Readjustments of the control function if the operation results are not acceptable. 
Control function readjustment could be required due to the different reasons, including system 
parameters variations detected in the second mode, when the model verification is performed. For 
some control algorithms, as well as for others in some extreme cases, readjustment means that the 
search process for the acceptable control function must be started again with no acceptable control 
function available. As a result, the algorithm goes back into the first mode instead of the third one, 
which is supposedly more efficient in terms of solution time and required computational power. 
One should also note that it is not necessary to use the same algorithm in all modes of operation. 
Proper combination of different algorithms will deliver better results since it allows using the most 
appropriate algorithm for the task. 
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Evolutionary control algorithms. Evolutionary algorithms are widely used to solve multi-
parametric and multi-objective optimisation problems. In conventional evolutionary algorithms, 
which also could be referred to as genetic algorithms, the search process is stopped as soon as the 
acceptable solution is found. However, in order to implement the ongoing optimal control for a 
dynamic system, the searching process should not be interrupted while the best acceptable solution 
is taken to be applied to the system. Such a modification is represented by a flowchart in the figure 
3. In a sense, the evolutionary control algorithm above has no explicit ending. However, it is 
terminated as soon as the system has been successfully transferred to the goal state. Reaching the 
goal is checked all the time no matter whether the better control has been found or not (it is 
reflected in the figure 3 by the dotted line). Generating of controls requires additional adjustment of 
all of the controls in the current set with respect to the updated time of the system, which is referred 
to as time trimming. Although the “evolutionary” nature of the algorithms is not obvious from the 
flowcharts above, it becomes apparent when all of the stages are given in greater details. Let us now 
study in greater details major blocks that form the evolutionary algorithm with respect to its control 
application. During the initialization stage, predefined number N of control programs in the form (4) 
is generated randomly. This initial set can be either evenly distributed across the search space 
(“uneducated search”) or having higher density in vicinity of suggested solution (“educated 
search”). The latter could be efficiently used especially in the control readjustment mode. During 
the control programs evaluation stage, every program from the current set is decoded into a control 
function using the instruction set (3). This function is then evaluated in terms of its capability to 
solve the control problem (transfer the system to the goal state) with respect to the optimisation 
criteria and constraints. After evaluation, the acceptable control function could be selected and then 
used to control the system. Moreover, based on the results of the controls evaluation, every control 
program in the current set of programs is assigned a “fitness” value, which defines the probability 
for this program to be later used to produce the next generation of programs. With or without the 
acceptable control program found, the evolution of the control programs is continued, and new set 
of control programs is generated. The process of the new controls generating is shown as a 
flowchart in the figure 4. In order to generate new set of programs, two encoded control programs 
from the current set are selected randomly using the fitness defined probabilities (the higher fitness 
value, the higher probability for the program to be selected). After that, application of so called 
genetic operations results in a new control program, which is placed to the new set. This solution 
generation process is repeated until N new control programs are generated, and old set can be 
finally discarded. 

Genetic operations. There are four genetic operations that can be applied to the selected 
functions: crossover, mutation, inversion, and length modification. The latter operation defines the 
difference between the conventional genetic algorithms and VLGA. During the crossover, for each 
of the two selected control programs 1B  and 2B  a random index ))2,1min(,1( vvn  is generated 

that splits the corresponding program into two sub-programs: 

},,,,,{ 11111 vnn bbbbB   , 

},,,,,{ 21122 vnn bbbbB   . 
 

After that, two new control programs are produced by exchanging the obtained earlier sub-
programs: 

},,{},,{ 2211111 vnn bbbbB   
 , 

},,{},,{ 1112122 vnn bbbbB   
 . 

(6) 

Finally, only one of the resulting control programs (6) is randomly selected for the further 
processing. Application of the mutation operation means increasing or decreasing randomly 
selected instruction within the selected control program: 

},,1,,{},,,,{ 11 vnvn bbbBbbbB    . (7) 
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Needless to say, that the boundary condition ],,1[ pbn   must be checked and corresponding 

adjustments must be applied if necessary. Next genetic operation, which is inversion, is applied 
with relatively small occurrence probability, and is used to provide necessary global optimum 
search capability for the algorithm. 
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Fig. 3. Evolutionary control algorithm 
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Fig. 4. New controls generating process 

 
First random index is generated for the selected control program, thus dividing it into two sub-
programs. After that, new control program is produced by exchanging the order of the sub-
programs:  

},,,,,{},,,,,{ 1111 


  nvnvnn bbbbBbbbbB  . (8) 

One should note that contrary to the crossover operation (6), mutation (7) and inversion (8) do not 
modify length of the subjected control program. Additional variation of the control program length 
is done by means of the modification operation 

},,{},,{ 11 
  vv bbBbbB  , nvv  . (9) 

Here n  is the number of instructions either added to or subtracted from the control program. In case 
of length increasing modification, added instructions are randomly selected from the instruction set. 
Each of the described above genetic operation is applied using its own application probability. 

Fitness function. One of the problems related to the application of evolutionary algorithms to 
the procedural optimal control is a proper choice of the used fitness function. In a sense, finding the 
optimal control function requires solving a multi-objective optimisation problem. Successful fitness 
function must adequately represent not only control accuracy, based on which the acceptable 
control program can be identified, but the optimisation criterion and problem constraints as well. 
The simplest linear aggregation of the mentioned quantities is given by the following expression: 

)}(),({)( 0 vJgvDC xxJwxxDwwBf


 . (10) 

Here Cw , Dw , and Jw  are the weight coefficients for the constraints violation penalty, Euclidean 

distance in the state space between the final state vx


 after control program execution and the goal 

state gx


, and cost function correspondingly. In this case, fitness function is inversely proportional to 
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the expression (10). One should note, that as soon as the successful program able to control the 

system to the desired state is found, which means 0),( gv xxD


, fitness value solely depends on 

the cost function (2). The latter provides smooth transition of the algorithm operation from the 
searching for any acceptable solution to the searching for the optimal one. In general, proper choice 
of the fitness function providing the best algorithm operation in terms of its accuracy and reliability 
is certainly subject for further research. 

Algorithm testing. The benchmarking testing case is the control of a linear system that is 
defined by simple ordinary differential equations 

U
V

X

V

X

dt

d




































1

0

5.00

10
, (11) 

from the state }1,1{0 x


 to the state }0,0{gx


 with respect to either minimal time or shortest 

trajectory in the state-space. Although the system (11) is simple and linear, it will be presented to 
the algorithm as a purely numerical model. The system (11) will be controlled with and without 
presence of constraints. Constraints are given by the following system of inequations, defined in the 
state space:  











.625.0)25.0()1(

,625.0)5.0()5.1(
22

22

VX

VX
, (12) 

The controls are allowed to have only three admissible values }1,0,1{0 u


, and the control time 

step is 25.0t s. Algorithm performance is suggested to be evaluated in terms of sims. One 
“sims” corresponds to a single estimation (prediction) of the system state after time t .  

The following parameters were used for the algorithm: number of programs in the generation 

N = 100, initial program length 160 v , mutation probability – 0.1, crossover probability – 0.9, 

modification probability – 0.1, and inversion has been disabled. Simulations results are given in the 
table 1 and shown in the figures from 5 to 8. In the figures 7-10 the dashed line corresponds to the 
first found acceptable solution and the solid line corresponds to the best found optimal solution. 
Transitional states are shown by means of black and white circles for the acceptable and optimal 
solutions correspondingly. 

Parallelisation of the algorithm. Analysing the shown above results one should note that 
finding the optimal solution to the given problem using VLGA may require significant amount of 
simulations to be done, which results in increased solution finding time. On the other hand, real-
time applications of the algorithm require the solution to be found as soon as possible. One of the 
approaches to this problem is to use parallelisation during the “controls evaluation” stage . In this 

case, every control program iB  (9) from the set of N programs is evaluated at the separate 

processing unit PUi, which performs system simulation with respect to the given control function 
and calculates quality function (10).  The best performance is achieved when number of PUs equals 
to the number of the control programs N. Using this kind of parallelisation, evaluation time of the 
whole set of programs equals the time of the longest program evaluation. At the same time, by 
increasing the number N of the control programs and corresponding PUs, the solution could be 
found within smaller number of iterations, while keeping the evaluation time constant.  

Conclusions. From the presented in this paper results, one can see that the variable length 
genetic algorithm is perfectly capable of solving the procedural optimal control problem even for 
the numerically defined system model and constraints. At the same time, sub-optimal but acceptable 
control solution could be also found prior to the optimal one after significantly less number of 
iterations.  

Although the algorithm allows its parallelisation, the following approaches to its improvement 
in terms of performance and quality of the obtained solution are yet to be investigated: other forms 
of multi-objective fitness functions, fitness weight coefficients optimisation, adaptive time step, and 
so on. Algorithm readjustment performances in case of varying system parameters and stochastic 
disturbances must be properly studied as well. 
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Fig. 5. Unconstrained minimizing trajectory length Fig. 6. Constrained minimizing trajectory length 
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Fig. 7. Unconstrained control minimizing time Fig. 8. Constrained control minimizing time 
 

Table 1. Algorithm performances 
Problem and type of solution Iterations Sims Cost 
Minimal trajectory length    

Unconstrained acceptable 14 24 198 3.51 
Unconstrained optimal 510 1 202 969 3.01 
Constrained acceptable 99 141 693 4.90 
Constrained optimal 8741 21 464 704 4.43 

Minimal time    
Unconstrained acceptable 14 25 337 4.75 
Unconstrained optimal 110 181 347 3.25 
Constrained acceptable 223 305 420 5.00 
Constrained optimal 3711 5 269 306 4.25 
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