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Summary 
 
In this paper a generalised approach to the analysis of the dynamics and errors of 

different types of Coriolis Vibratory Gyroscopes (CVG), as well as calculation of their 
performances for application in the design of such gyroscopes, is considered. In 
particular dynamics and errors of single mass gyroscopes, for both translational and 
rotational movement of the sensitive element, is investigated and analysed. Based on 
the generalised equations, analytical dependencies for basic errors, such as scale 
factor non-linearity, bias from misalignment between elastic and measurement axes, 
bias from vibrations and dynamic error caused by harmonic angular rate, are derived 
and analysed. A methodology for the optimal design of the sense element has been 
developed and the results applied to the design, fabrication and testing of a 
micromechanical CVG. 

 
Introduction  

 
Fabrication technologies for microcomponents, microsensors, micromachines and 

micro-electromechanical systems (MEMS) are being rapidly developed, and 
represent a major research effort worldwide. There are many techniques currently 
being utilised in the production of different types of MEMS including inertial micro-
sensors that made it possible to fabricate MEMS in high volumes at low individual 
cost. 

 Micro-mechanical CVGs have already been proposed for or actually deployed in 
numerous applications, including automotive active suspension and traction control 
systems, air bag activation, consumer electronics, guided munitions, robotics, etc. As 
the technology advances, micro-mechanical sensors will be deployed in many other 
functions that can benefit from the inexpensive detection of angular rate as well as 
other motion parameters. A key component of the angular rate sensor is a 
mechanical structure (or sensitive element) that is sensitive to rotation. One of the 
main problem sources in CVG development is intuitive design approach and almost 
absolute absence of the well-developed operation and error theories as well as 
analytical design methodologies. Currently designers have to make numerous 
simulations and experiments trying to obtain the appropriate designs for sensitive 
elements. This approach only occasionally could result in an optimal and efficient 
design. As a result, performances of all present micro-mechanical CVG still remain 
very low, which significantly reduces number of the possible applications.  

One of the ways to improve performances of CVG is to analyse their dynamics 
and errors. Mathematical models of symmetrical (without decoupling frames) 
sensitive elements with translational movement of a proof mass applicable to 
analysis of CVG were considered in [1] and [2]. Dynamics and errors of gimballed 
and tuning fork micro-mechanical gyroscopes were considered in [3-5]. Dynamics 
and errors of translation CVG with a decoupling frame were studied in [6,7].  Some 
calculations of performances for micro-mechanical gyroscopes with translational 
oscillations of a proof mass were considered in [8, 9].  But no analytical approaches 
to design were developed in any of the mentioned papers.  

In this paper, we considered a common approach to the analysis of the dynamics 
and errors of different types of Coriolis vibratory gyroscopes as well as calculation of 
their performances for application in the design of such gyroscopes. 
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Angular rate sensing and motion equations of the sensitive element 
 
For most CVGs, the sensitive element can be represented as an inertia element 

and elastic suspension with two degrees of freedom. The sensitive element is excited 
to oscillate at one of its mode with prescribed amplitude. When the sensitive element 
rotates about a particular body-fixed axis, the resulting Coriolis force causes the 
proof mass to be excited in a different resonant mode. It is obvious that information 
about the angular rate is contained in these different oscillations. Hereinafter excited 
oscillations will be referred as primary oscillations and oscillations caused by angular 
rate will be referred as secondary oscillations.  

In general, it is possible to design gyroscopes with different types of primary and 
secondary oscillations. For example, a combination of translation as primary 
oscillations and rotation as secondary oscillations as was implemented in tuning-fork 
gyroscopes. However, it is typically more convenient for single-mass gyroscopes to 
be implemented with the same type of primary and secondary oscillations. 

The dynamics of a sensitive element of Coriolis vibratory gyroscopes can be 
described by a set of dynamic parameters as follows: 1k , 2k  - natural frequencies of 
secondary and primary oscillations; 1ζ , 2ζ - relative damping factors; ω  - operating 
(driving) frequency. 

They entirely determine structural parameters such as mass, length of springs and 
vacuum level among others for any achievable fabrication process. On the other 
hand, characteristics such as measurement range, sensitivity, resolution, bias and 
bandwidth are the subject of sensitive element design process. Let us determine 
dependencies and rules that can allow us to obtain dynamic parameters and 
technology tolerances on the basis of final technical requirements. 

Let us introduce the right-handed orthogonal and normalized reference basis in 
which primary oscillations are excited along the second axis, secondary along the 
first axis and therefore the third axis is the sensitive axis (see fig. 1).  

 

X 1

X 2

O

X 3

r
Ω

 
Fig. 2.  Sensitive element of a single-mass CVG 

 
Assuming that the reference basis rotates with an arbitrary angular rate vector 
{ }321 ,, ΩΩΩ=Ω

r
 generalised equations of motion of a single-mass sensitive element 

can be presented in the form 
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where ( )tqi  represents either force/mass or torque/inertia about the corresponding 
axis and ix  represents either translation or angular displacements of the proof mass. 
Other factors introduced in (1) are given in Table 1.  In Table 1, all moments of inertia 
are presented in the form ijI  where the first index refers to the variable x while the 
second index refers to the axis. 
 
Table 1. Dimensionless inertia parameters 

 Translational Rotational 
1d  1 ( ) 111312 III −  

2d  1 ( ) 222321 III −  

1g  2 ( ) 11131211 IIII −+  

2g  ( )2112 mmm +  ( ) 22131211 IIII −+  
 

By means of equations (1) we can study dynamics of both translational and 
rotational sensitive elements. All parameters of inertia presented in Table 1 are 
subjected to the design process. Let us note that the rotational sensitive elements 
are more liable to be adjusted by optimisation ([10]). 

 
Motion of a sensitive element on rotating base 

 
Assuming an open-loop operation of the gyroscope and zero phase displacement 

for excitation force we can represent the right-hand part of  (1) as follows: 
( ) 01 =tq , ( ) { }tiqtq ω= eRe 22 . (2)

We can also represent our generalized variables as 
( ) { } 1e   ,eRe 1111

ϕω == iti AAAtx , ( ) { } 2e,eRe 2222
ϕω == iti AA   Atx , (3)

where 1A  and 2A  are the amplitudes and 1ϕ  and 2ϕ  are the phases of secondary 
and primary oscillations respectively. Using (2) and (3), a complex solution of the 
equations (1) can be obtained 

3
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(4)

From (4), we can easily obtain real amplitudes of primary and secondary oscillations 
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(5)

and also their phases given by 

( ) ( )( ) ( )
( ) ( )[ ]22

31
2

122
22

32
2
211

2
3212121

222
32

2
2

22
31

2
1

1 2
4tg

ω−Ω−ζ+ω−Ω−ζω
Ω+ζζω−ω−Ω−ω−Ω−

=ϕ
dkkdkk

ggkkdkdk , 

( ) ( )[ ]
( ) 1

2
112

22
31

2
1

2111
22

31
2

1
2 4

2tg
bkbdk

bkbdk
ωζ−ω−Ω−
ζ+ω−Ω−ω

=ϕ , 

( ) ( )22
31

2
122

22
32

2
2111 ω−Ω−ζ+ω−Ω−ζ= dkkdkkb , 

( )( ) ( )2
3212121

222
32

2
2

22
31

2
12 4 Ω+ζζω−ω−Ω−ω−Ω−= ggkkdkdkb . 

(6)



Proceeding of Symposium Gyro Technology 2002, Stuttgart, Germany. pp. 2.0-2.15 

Using formulae (5) and (6) for the amplitudes and phases respectively, we can 
determine the sensitivity of a single mass Coriolis vibratory gyroscope. 

 
Sensitivity and linearity 

 
As follows from (5), the amplitude of secondary oscillations depends on the 

angular rate 3Ω . Let us represent this amplitude by dimensionless variables by 
means of the following substitution  

kkk δ=1 , kk =2 , δω=ω k , Ωδ=Ω k3 , (7)
as a function of new dimensionless variable amplitude given by 

Ωδ
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= 2
21
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(8)

Note that no assumption on the value of the angular rate was made. It is obvious that 
the relationship between the amplitude of the secondary oscillations and the angular 
rate is not linear. However, for the optimal performance this dependence has to be 
linear. The sensitivity can be taken as the gradient of dependence (8) at the origin. In 
this case sensitivity for the relative angular rate Ωδ  can be given by 

( )( )( )( )2
2

2222
1

222223

21

414 ζδω+δω−ζδωδ+δω−δ

δω
=Ω

kkk

qg
C , (9)

where Ω= ΩCA10  is the desirable output as compared with 1A . The dependence of 
the sensitivity on the natural frequencies ratio kδ  and drive frequency δω  is shown in 
Fig. 2.   

Analysis of Fig. 2 shows that the biggest sensitivity is achievable only if natural 
frequencies are equal and excitation occurs on the eigenfrequency of primary 
oscillations. Moreover, considering (9) it is apparent that for better sensitivity the 
natural frequency of primary oscillations has to be as low as possible. 

 

 
 

Fig. 2.  Sensitivity as a function of 
natural frequency ratio kδ  

and relative driving frequency δω  

Fig. 3.  Non-linearity as a function of the 
relative angular rate 

 
On the other hand it will lead us to the non-linear angular rate transformation. Let 

us introduce a non-linearity dimensionless parameter as 

10

11
A
AL −=Ω . 
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The relationship between ΩL  and the angular rate Ωδ  is shown in fig. 3. For given 
small values of non-linearity 05.0<ΩL  we can obtain following the approximate 
formula for relative angular rate 

( )[ ]( )[ ]
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2
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kdkggD
kkL , (10)

where ( ) ( )( ) 2
1

22
2

2
2121

2
21

22
0 4 ζδωδ+δω−+−δ+δω−δ= kdggddkddkD . Assuming a 

value for ΩL  and a suitable measurement range of the angular rate maxΩ , ∗Ωδ  can be 
obtained from (10). From (7), we can then calculate the minimal value for the natural 
frequency of primary oscillations 

∗Ωδ
Ω

= max
mink . (11)

For example, if 01.0=ΩL  and 1
max  0.1 −=Ω s  then minimal value for the natural 

frequency of primary oscillations will be Hz 45min ≈k . Such a low value for the 
frequency means that the lower limit will in fact be determined by other factors but 
nevertheless there is no reason to make it very high. 

 
Resolution 

 
Formulae for calculation of resolution for the single mass CVG can be obtained by 

means of given minimal capacity changes, which the device is capable of detecting. 
Let us denote this minimal change as minC∆ . In case of differential measurement the 
resulting capacitance change is produced by the subtraction of two separately 
measured capacitances 1C  and 2C  as follows: 

( ) ( ) ( ) ( )
δ

δ
≈δ−δ=δ∆

d
dCCCC 0221 ,  (12)

where δ  is the displacement of the electrodes. The shift of the electrodes caused by 
changes of the angular rate ∆Ω  is given by 

∆Ω=δ ΩCr0 , (13)
where ΩC  is determined by (9), 0r  is the distance from the rotation axis to the centre 
of electrode for the rotary sensitive element and unity for the translational sensitive 
element. Thus, comparing (12) and (13), we can obtain the resolution of a single 
mass Coriolis vibratory gyroscope that is given by 

( )( )( )( )
( )

δω
δ

ζδω+δω−ζδωδ+δω−δ∆
=∆Ω

210

2
2

2222
1

222223
min

min 02

414

qgr
d

dC
kkkC

 (14)

Note that formula (14) represents the resolution with a capacitive readout. 
However, the same procedure can be applied to any readout principle. The best 
resolution corresponds to a minimal min∆Ω . 

 
Bias 

 
Bias in CVGs can be the result of many different factors. Let us consider sources 

of bias concerned with the sensitive element and its dynamics. One of them is 
vibration at the drive frequency. Interference of vibrations at other frequencies can be 
filtered. It is obvious that for the translational gyroscopes, only translational vibration 
will have an effect and for rotational gyroscopes, only angular vibrations will be 
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relevant. Therefore, in the case of vibrations at drive frequency, the motion equations 
of the sensitive element will be  

( ) ( )
( ) ( ) ( )⎪⎩

⎪
⎨
⎧

+=Ω+Ω−+ζ+

=Ω−Ω−+ζ+
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,2
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&&&&

&&&&
 

Representing the vibrations as ( )tww ii ω= cos0 , we can obtain the solution of the 
amplitude of secondary oscillations in relative form 

( ) ( )
∆

Ωδ+ζδω+δω−Ωδ−+Ωδωδ
= 2

2
201102

22222
1021

1

21
k

wgwwqg
AW . (15)

If we denote the amplitude without vibrations as 10A , which is given by (8), then the 
relative error caused by vibration at drive frequency is given by 

( ) ( )
Ωδωδ

Ωδ+ζδω+δω−Ωδ−
=

−
=δ

21

2
201102

2222
2

2
10

10

101 21
qg

wgwdw
A

AAA W
W  (16)

Let us note that the error arising from vibration does not depend on the ratio between 
the natural frequencies but depends on the relative drive frequency. This 
dependency is shown in fig. 4.  
 

 
Fig. 4.  Typical error from vibrations as a function of relative driving frequency 

 
It can be easily proved that the minimal value for this error achievable at driving 
frequency is a solution of the following equation: 

1101 2
1

2
1

2 ≈Ωδ−=δω⇒=Ωδ−δω− dd . (17)
This result also proves that it is preferable to drive the primary oscillations at 
resonance.  

Another source of bias is a misalignment between elastic and readout axes. Also 
this error is usually referenced as quadrature error. This is most typical for the 
translation sensitive elements. The linearized motion equations in this case will be as 
follows 

( )
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Here θ  is the misalignment angle, ( ) 22
21

2
11

2
1 kkk −=∆ , ( ) 22

12
2
22

2
2 kkk −=∆  and ijk  are 

the frequencies such that ( ) 22
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2
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2
1 kkk +=  and ( ) 22

12
2
22

2
2 kkk += . The amplitude of the 

secondary oscillations in this case will be 
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kgq
A , (19)
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( )( ) ( )[ ]
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It is obvious that if 0=θ  then there is no error arising from misalignment. Moreover, 
this error will also be absent in the following case 

21
1

212
1 0

2
cc

m
cck =⇒=

−
=∆ . (20)

Here ic  are the stiffness factors of the elastic suspension and 1m  is the effective 
mass of secondary oscillations. In addition, we can represent the amplitude (19) as a 
sum of two components, namely, one arising from the angular rate and the other 
caused by misalignment θ+≈ AAA 101 . In this case we can determine the relative 
error from such misalignment as 

22
1

4
1

2

10 Ωδδω
∆δθ

==δ θ
θ g

k
A
AA , ( 0≠Ω ). (21)

On the other hand, we can find an acceptable tolerance for the misalignment maxθ  
assuming an acceptable relative bias maxΩδ  and condition of no rotation  

2
1

max
max k∆δ

δωΩδ
=θ . (22)

Formula (22) also gives us an angle of misalignment if bias is known. This value can 
also be used for algorithmic bias compensation. If we can obtain information from 
other sources of primary information then it is also possible to use (19) to determine 
the bias compensation. 

 
Dynamic error and bandwidth 
 

Let us consider movement of the sensitive element on a basis that rotates with 
harmonic angular rate ( ) { }tit λΩ=λΩ=Ω eRecos 00 . The corresponding motion 
equations of the sensitive element in this case, taking into account the assumption 
that the frequency of angular rate is small compared to the operation frequency, are 
given by 

( )
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&&&&&

&&&&&
 (23)

When the amplitude of the angular rate is small ( 20 k<<Ω ), we can neglect the right-
hand terms in the second equation of (23) except for the excitation term. In addition, 
centrifugal accelerations in this case are small and hence the equations reduce to 

( )⎪⎩

⎪
⎨
⎧

ω=+ζ+

Ω+Ω=+ζ+

.cos2

,2

22
2
22222
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2
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&&&

&&&&&
 (24)

Partial solution of the second equation in (24) is given by the following 
( ) { } ( ){ }2eReeRe 222

ϕ+ωω == titi AAtx , 

( ) 22
2

222

2
2

41 δωζ+δω−
=

k

qA , ( ) 2
2

2 1
2tg
δω−
δωζ

−=ϕ . 

Then, the right-hand part of the first equation in (24) will be 

( ) ( ){ }tiftif gAgA 21 eeIm
2 1212

0 λ−ω+λ+ω
Ω

− , λ±ω=2,1f . 
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Partial solution of (24) for the secondary oscillations 1x  yields a solution given by a 
sum of two oscillations with frequencies λ±ω=2,1f : 

( ) { }tiftif AAtx 21 eeIm 12111 += . 
After substitution of the supposed solution in the first equation of (24) we can find 
complex amplitudes of secondary oscillations 

( )
( ) ( )[ ][ ]δωζ+δω−δλ±δωδζ+δλ±δω−δ

δλ±δωΩ
−=

ikikk
gq

A
2

2
1

223
120

12,11 2122
, 

where kλ=δλ  is the relative frequency of the angular rate. Transition to real 
amplitude and phase gives us 
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2
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1
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4142 δωζ+δω−δλ±δωδζ+δλ±δω−δ

δλ±δωΩ
=

kkk
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Hence the partial solution for the secondary oscillations is given by 
( ) ( )[ ] ( )[ ]121211111 sinsin ϕ+λ−ω+ϕ+λ+ω= tAtAtx . (25)

Here the phase shifts 12,11ϕ  are determined from the following expression 
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kk
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Assuming that 0=δλ⇒=Ω const , we can obtain the amplitude and phase of the 
secondary oscillations when the angular rate is constant. By making the following 
substitutions: ( )AAA δ±= 11012,11 , ϕ∆±ϕ=ϕ 012,11 , the solution (25) will change to 

( ) ( ) ( ) ( ) ( )[ ]00101 cossinsincos2 ϕ+ωϕ∆+λδ+ϕ+ωϕ∆+λ= ttAttAtx . 
After multiplying signal corresponding to the secondary oscillations on a carrier signal 

( )0sin ϕ+ωt , the output will be as follows 
( ) ( ) ( ) ( )[

( ) ( )].22sinsin
22coscoscos

0

0101

ϕ+ωϕ∆+λδ+
+ϕ+ωϕ∆+λ−ϕ∆+λ=∗

ttA
tttAtx

 

The first item ( )ϕ∆+λtA cos10  is the signal proportional to the angular rate. All other 
items have doubled frequency and must be removed by filtering after demodulation. 
The output signal is distorted both in amplitude and phase. Phase distortion ϕ∆  is 
well predictable in a very wide range by means of obtained formulae. Amplitude error 
caused by the harmonic angular rate is 

2

0

010 δλ≈
−

=Ωδ λK
A

AA , (26)

where 
( ) ( ) ( )[ ] ( )[ ]

( )[ ]22244
1

11
224

1
4

1
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1
6

2

321465223

hkkg

gghkggkkhgK
δωδ−δω+δ

−−−δωδ+−δω−+δδ+−δω
=λ , 

2
121 ζ−=h , ( )0100 =δλ= AA . 

Formula (26) gives only approximate results but for small values of the relative 
frequency of the angular rate ( 01.0<δλ ) they are acceptable. The exact formula is 
more complex and there is no reason to use it in this context. Graphs corresponding 
to both approximate and exact dependence are shown in fig. 5. It is apparent that the 
dynamic error increases if the ratio between the natural frequencies approaches 



Proceeding of Symposium Gyro Technology 2002, Stuttgart, Germany. pp. 2.0-2.15 

unity. In addition, it is possible to calculate a bandwidth if one assumes an 
acceptable relative dynamic error maxΩδ  

λ
Ω

Ωδ
=

K
kB max . (27)

Here, the bandwidth ΩB  is measured in radians per second. The graph for the 
bandwidth is shown in fig. 6. 
 

Fig. 5.  Dynamic error as a function of 
relative angular rate frequency 

(dashed line 05.1=δk , solid line 1.1=δk ) 

Fig. 6.  Relative bandwidth as a function 
of ratio of the natural frequencies 

( 01.0max =Ωδ ) 
 
Analyzing both fig. 6 and fig. 2, we can see that as the ratio of the natural frequencies 
approaches unity (i.e. 1≈δk ), one will obtain the maximal sensitivity but the minimal 
bandwidth. This effectively leads to a trade-off between these parameters. For open-
loop gyroscopes, it is acceptable to have a ratio of the natural frequencies in the 
range of 0.9 – 0.95. For closed-loop operation, it is reasonable to have a ratio 1≈δk  
for maximal sensitivity but providing necessary bandwidth by feedback. 

 
Design methodology 

 
The presented analysis of the sensitivity, linearity and bandwidth has resulted in 

two main design trade-offs. First, in order to increase sensitivity, operational 
frequencies have to be as low as possible, but at the same time there is a lower limit 
that depends on scale factor linearity requirements. As a result, the natural frequency 
of the primary oscillations can be chosen by means of formula (11) taking into 
consideration acceptable value of the non-linearity and required measurement range. 
Second, in order to obtain maximum sensitivity, both natural frequencies of primary 
and secondary oscillations have to be of the same value, but it will result in a 
minimum for the bandwidth. This trade-off can be resolved by formula (27) so that the 
ratio of the natural frequencies can be designed to provide the necessary bandwidth. 
As a result, such parameters as driving frequency, primary natural frequency (natural 
frequency of the primary oscillations) and ration of the natural frequency can be 
directly calculated and they have to be precisely implemented during sensitive 
element design. 
 
Testing results 
 

Presented design methodology was used in designing of a micro-mechanical 
CVG. In order to make design process efficient specialised design software tool was 
developed. Based on the formulae presented in the paper the software allows not 
only real-time observation of the mechanical parameters of the sensitive element but 
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also all the main gyroscope performances during design process. After finishing of 
the design, geometry of the sensitive element can be exported directly to the mask 
file. Details of the in-house developed software are available from the authors. Some 
photos of the fabricated sensitive element are shown in Figures 7 and 8. 

 

Fig. 7. Part of  the sensitive element Fig. 8. Driving comb-structures 
 

 
Fig. 9. Gyroscope rate testing results 

 
Rate table tests of the fabricated micro-mechanical gyroscope were conducted 

and results are shown in Figure 9. Note that the gyroscope was tested in the air (no 
vacuum) as well as without on-chip electronics, which resulted in significant 
measurement noise. Due to the low natural frequency and optimal design, sensitivity 
to the angular rate nevertheless was indeed detected. Low level and non-linearity of 
the response for the small angular rate is caused by the measurement noise. 

 
Conclusion  

 
The presented analytical approach to the design of the sensitive element of 

Coriolis vibratory gyroscopes allows both prediction of the performances and 
determination of the design parameters that are necessary to achieve high 
performance of inertial instruments. Even though the proposed approach is applied to 
sensitive elements, most of the dependencies can also be used for detailed analysis 
of the dynamics of CVGs while designing control circuits. Due to the optimal design, 
the sensitivity to the angular rate was detected even without vacuum packaging and 
low-noise on-chip application specific integrated circuits.  
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