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Summary

In this paper a generalised approach to the analysis of the dynamics and errors of
different types of Coriolis Vibratory Gyroscopes (CVG), as well as calculation of their
performances for application in the design of such gyroscopes, is considered. In
particular dynamics and errors of single mass gyroscopes, for both translational and
rotational movement of the sensitive element, is investigated and analysed. Based on
the generalised equations, analytical dependencies for basic errors, such as scale
factor non-linearity, bias from misalignment between elastic and measurement axes,
bias from vibrations and dynamic error caused by harmonic angular rate, are derived
and analysed. A methodology for the optimal design of the sense element has been
developed and the results applied to the design, fabrication and testing of a
micromechanical CVG.

Introduction

Fabrication technologies for microcomponents, microsensors, micromachines and
micro-electromechanical systems (MEMS) are being rapidly developed, and
represent a major research effort worldwide. There are many techniques currently
being utilised in the production of different types of MEMS including inertial micro-
sensors that made it possible to fabricate MEMS in high volumes at low individual
cost.

Micro-mechanical CVGs have already been proposed for or actually deployed in
numerous applications, including automotive active suspension and traction control
systems, air bag activation, consumer electronics, guided munitions, robotics, etc. As
the technology advances, micro-mechanical sensors will be deployed in many other
functions that can benefit from the inexpensive detection of angular rate as well as
other motion parameters. A key component of the angular rate sensor is a
mechanical structure (or sensitive element) that is sensitive to rotation. One of the
main problem sources in CVG development is intuitive design approach and almost
absolute absence of the well-developed operation and error theories as well as
analytical design methodologies. Currently designers have to make numerous
simulations and experiments trying to obtain the appropriate designs for sensitive
elements. This approach only occasionally could result in an optimal and efficient
design. As a result, performances of all present micro-mechanical CVG still remain
very low, which significantly reduces number of the possible applications.

One of the ways to improve performances of CVG is to analyse their dynamics
and errors. Mathematical models of symmetrical (without decoupling frames)
sensitive elements with translational movement of a proof mass applicable to
analysis of CVG were considered in [1] and [2]. Dynamics and errors of gimballed
and tuning fork micro-mechanical gyroscopes were considered in [3-5]. Dynamics
and errors of translation CVG with a decoupling frame were studied in [6,7]. Some
calculations of performances for micro-mechanical gyroscopes with translational
oscillations of a proof mass were considered in [8, 9]. But no analytical approaches
to design were developed in any of the mentioned papers.

In this paper, we considered a common approach to the analysis of the dynamics
and errors of different types of Coriolis vibratory gyroscopes as well as calculation of
their performances for application in the design of such gyroscopes.
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Angular rate sensing and motion equations of the sensitive element

For most CVGs, the sensitive element can be represented as an inertia element
and elastic suspension with two degrees of freedom. The sensitive element is excited
to oscillate at one of its mode with prescribed amplitude. When the sensitive element
rotates about a particular body-fixed axis, the resulting Coriolis force causes the
proof mass to be excited in a different resonant mode. It is obvious that information
about the angular rate is contained in these different oscillations. Hereinafter excited
oscillations will be referred as primary oscillations and oscillations caused by angular
rate will be referred as secondary oscillations.

In general, it is possible to design gyroscopes with different types of primary and
secondary oscillations. For example, a combination of translation as primary
oscillations and rotation as secondary oscillations as was implemented in tuning-fork
gyroscopes. However, it is typically more convenient for single-mass gyroscopes to
be implemented with the same type of primary and secondary oscillations.

The dynamics of a sensitive element of Coriolis vibratory gyroscopes can be
described by a set of dynamic parameters as follows: k,, k, - natural frequencies of
secondary and primary oscillations; &,, C,- relative damping factors; ® - operating
(driving) frequency.

They entirely determine structural parameters such as mass, length of springs and
vacuum level among others for any achievable fabrication process. On the other
hand, characteristics such as measurement range, sensitivity, resolution, bias and
bandwidth are the subject of sensitive element design process. Let us determine
dependencies and rules that can allow us to obtain dynamic parameters and
technology tolerances on the basis of final technical requirements.

Let us introduce the right-handed orthogonal and normalized reference basis in
which primary oscillations are excited along the second axis, secondary along the
first axis and therefore the third axis is the sensitive axis (see fig. 1).
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Fig. 2. Sensitive element of a single-mass CVG

Assuming that the reference basis rotates with an arbitrary angular rate vector
Q={0,,Q,,Q,} generalised equations of motion of a single-mass sensitive element
can be presented in the form

{Xl +20.k % + (k12 - dlgg )Xl —0,0:%, = ql(t)

y . . (1)
X, +2C,K,X, +(k22 _dzgg )Xz +0,0;% =0, (t)!
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where qi(t) represents either force/mass or torque/inertia about the corresponding
axis and x; represents either translation or angular displacements of the proof mass.

Other factors introduced in (1) are given in Table 1. In Table 1, all moments of inertia
are presented in the form I; where the first index refers to the variable x while the

second index refers to the axis.

Table 1. Dimensionless inertia parameters

Translational Rotational
d1 1 (|12_|13)/|11
dz 1 (|21_|23)/|22
g 2 (|11+|12_|13)/|11
92 2m1/(m1+m2) (|11+|12_|13)/|22

By means of equations (1) we can study dynamics of both translational and
rotational sensitive elements. All parameters of inertia presented in Table 1 are
subjected to the design process. Let us note that the rotational sensitive elements
are more liable to be adjusted by optimisation ([10]).

Motion of a sensitive element on rotating base

Assuming an open-loop operation of the gyroscope and zero phase displacement
for excitation force we can represent the right-hand part of (1) as follows:

ql(t): 0, Q2(t) = Re{qz e } (2
We can also represent our generalized variables as
x(t)=Re{A e} A=Ae" x(t)=Re{A,e”| A =Ace", (3)

where A and A, are the amplitudes and ¢, and ¢, are the phases of secondary

and primary oscillations respectively. Using (2) and (3), a complex solution of the
equations (1) can be obtained

(k2 —d,02 - 0 +2¢ ki)
A
A =(k? —d,02 — 0? k2 - 4,02 — 02 ) 02 (48, kik, +0,,Q2 )+ ()
+ 2iofk,g, (k2 - 4,092 — 02 )+ k,¢, (k2 - d,02 — 0?)]

From (4), we can easily obtain real amplitudes of primary and secondary oscillations

k2 —d,Q? -0 | +4k2C20?

_ i® _
A:L:glqKZ Qg:AQZqZ

_0.0,0 0l
AT B AT A

N = [(k12 -d, Q5 -’ szz -d,QF - o’ )_032 (4€1€2k1k2 +0,0,Q; )]2 +

a0k, (k2 = d,02 — 07 )+ k,¢, (k2 - 4,02 — 0 )f

and also their phases given by
tg(cp ): (k12 -d,Q; -~ o’ szz -d,Q; - o’ )_0)2 (4C1C2k1k2 + glgzgg)
' 20[k,&, (k? —[(dZQ§ —0? )+ sz)z(kf —dl§]2§ ~o? )

20 k! —d, Q% -’ b, +k,,b,

tg( 2)_ (klz -dQF -0’ ))2 — 4k G, 0%, , ©)
b, = lel(kZZ ~d,Q3 _C‘)Z)"‘ szz(klz -d, Q] - ('02)’
b, = (k12 -d,Q; —o’ szz -d,Q; _@2)_@2 (4C1C2k1k2 + gngQg)'

(5)
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Using formulae (5) and (6) for the amplitudes and phases respectively, we can
determine the sensitivity of a single mass Coriolis vibratory gyroscope.

Sensitivity and linearity

As follows from (5), the amplitude of secondary oscillations depends on the
angular rate Q.. Let us represent this amplitude by dimensionless variables by

means of the following substitution

k, =kdk, k, =k, ®=kdw, Q; =k5Q, (7)
as a function of new dimensionless variable amplitude given by
9,9,
== —5Q,
A k*A
A =[(5k? = d,807 — 50 J1—d,50 —50* )-8 (45KC,C,, + 9,0,0Q° ) + (8)

+ 4502 [8ke, (L- 0,807 — 50 )+ £, (5k - d,50% — 5002 [
Note that no assumption on the value of the angular rate was made. It is obvious that
the relationship between the amplitude of the secondary oscillations and the angular
rate is not linear. However, for the optimal performance this dependence has to be
linear. The sensitivity can be taken as the gradient of dependence (8) at the origin. In
this case sensitivity for the relative angular rate 6Q can be given by
C = 0,9,0® (9)
Q )
k(6K — 502 + a5k 502 Jo- 8007 | + 45022
where A, =C,Q is the desirable output as compared with A . The dependence of
the sensitivity on the natural frequencies ratio 6k and drive frequency dw is shown in
Fig. 2.
Analysis of Fig. 2 shows that the biggest sensitivity is achievable only if natural
frequencies are equal and excitation occurs on the eigenfrequency of primary

oscillations. Moreover, considering (9) it is apparent that for better sensitivity the
natural frequency of primary oscillations has to be as low as possible.
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Fig. 2. Sensitivity as a function of Fig. 3. Non-linearity as a function of the
natural frequency ratio ok relative angular rate

and relative driving frequency d

On the other hand it will lead us to the non-linear angular rate transformation. Let
us introduce a non-linearity dimensionless parameter as

L, =1-22

0
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The relationship between L, and the angular rate 3Q is shown in fig. 3. For given
small values of non-linearity L, <0.05 we can obtain following the approximate
formula for relative angular rate

1
2 2 2
sy - Lo [(Skz ~50°) +48k28(02<;fl(1—6c02) +45c02gﬂ g (10)
(6w? —1)D, +450?|g,9,5k80°¢, &, — d,¢2(8k? - 500° )|
where D, = (5k? - 80?2 (d, +d,5k® = (d, +d, — 9,0, 0’ )+ 4d,5k?50’C2. Assuming a
value for L, and a suitable measurement range of the angular rate Q.. , Q" can be

obtained from (10). From (7), we can then calculate the minimal value for the natural
frequency of primary oscillations

Q
I(min = —y . 11
S (D
For example, if L,=0.01 and Q,, =10s" then minimal value for the natural
frequency of primary oscillations will be k., =45Hz. Such a low value for the

frequency means that the lower limit will in fact be determined by other factors but
nevertheless there is no reason to make it very high.

Resolution

Formulae for calculation of resolution for the single mass CVG can be obtained by
means of given minimal capacity changes, which the device is capable of detecting.
Let us denote this minimal change as AC_,,. In case of differential measurement the
resulting capacitance change is produced by the subtraction of two separately
measured capacitances C, and C, as follows:

dc(o)
Sds

AC(3)=C,(5)-C,(8)~ 2 8, (12)

where & is the displacement of the electrodes. The shift of the electrodes caused by
changes of the angular rate AQ is given by

§=1,CoAQ, (13)
where C,, is determined by (9), r, is the distance from the rotation axis to the centre

of electrode for the rotary sensitive element and unity for the translational sensitive
element. Thus, comparing (12) and (13), we can obtain the resolution of a single
mass Coriolis vibratory gyroscope that is given by

AC, k(8K —50? f +40k2602¢2 J(1- 5007 f +450:2¢2)
min dC(O) (14)
2 45 1,9,0,00
Note that formula (14) represents the resolution with a capacitive readout.
However, the same procedure can be applied to any readout principle. The best
resolution corresponds to a minimal AQ .

AQ

Bias

Bias in CVGs can be the result of many different factors. Let us consider sources
of bias concerned with the sensitive element and its dynamics. One of them is
vibration at the drive frequency. Interference of vibrations at other frequencies can be
filtered. It is obvious that for the translational gyroscopes, only translational vibration
will have an effect and for rotational gyroscopes, only angular vibrations will be
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relevant. Therefore, in the case of vibrations at drive frequency, the motion equations
of the sensitive element will be

{xl + 26,k %, + (k2 - d,Q2 ), — 9, Q%, = w, (t),

5(.2 + 2C2k2X2 + (kzz - dzgg )Xz + g2Q3X1 = qz(t)+ W, (t)

Representing the vibrations as w, = w,, cos(wt), we can obtain the solution of the
amplitude of secondary oscillations in relative form

0,0,5030 + W3 (L— 302 — 502 f +502(26, Wy +0,0QW,, 15
A = A : (15)
If we denote the amplitude without vibrations as A, which is given by (8), then the
relative error caused by vibration at drive frequency is given by

sA, = Ao _ W2 (- 0,807 — 802 f + 507 (20, + 0,80,
Ay 9,9,8®30

Let us note that the error arising from vibration does not depend on the ratio between
the natural frequencies but depends on the relative drive frequency. This
dependency is shown in fig. 4.

(16)

Belatiwve error
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Fig. 4. Typical error from vibrations as a function of relative driving frequency

It can be easily proved that the minimal value for this error achievable at driving
frequency is a solution of the following equation:

1-8w° -d,80Q% = 0= 80 = y1-d,8Q7 ~1. (17)
This result also proves that it is preferable to drive the primary oscillations at
resonance.

Another source of bias is a misalignment between elastic and readout axes. Also
this error is usually referenced as quadrature error. This is most typical for the
translation sensitive elements. The linearized motion equations in this case will be as
follows

%, + 2.k % + (k2 —d, Q2 )x, — 9, 0%, +20Ak?X, =0,
{xz +20,K,%, + (k2 —d,Q2 )X, + g,Q%, — 20Ak2x, =0, (t) (18)
Here 6 is the misalignment angle, Ak? = (k2 k2 )/2, AkZ =(k% -k2)/2 and k, are
the frequencies such that kZ = (k2 +k2 )/2 and kZ = (k2 +k2 )/2. The amplitude of the
secondary oscillations in this case will be

A= U\ 928072507 + 4025Ak;
k?A,

: (19)
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= [ -0 - 50 - .07 - 07 ) 807 (e0kc.¢, + 0,0.00° ] +

+ 4502 [5kE, (1— ,802 - 8007 )+ ¢, (5k? — 0,602 — 0% )— 25Q0(5AK? + 5k [
It is obvious that if 6 =0 then there is no error arising from misalignment. Moreover,
this error will also be absent in the following case

c,—¢C
Ak} =22 =0=c¢ =c,.
1 om, 1= 6 (20)
Here c, are the stiffness factors of the elastic suspension and m, is the effective

mass of secondary oscillations. In addition, we can represent the amplitude (19) as a
sum of two components, namely, one arising from the angular rate and the other
caused by misalignment A = A, +A,. In this case we can determine the relative
error from such misalignment as
2 4

8Ae=%=;%?§52,(9¢0). (21)
On the other hand, we can find an acceptable tolerance for the misalignment o,
assuming an acceptable relative bias 8Q2,,,, and condition of no rotation

0Q . 00
e T T oAk? (22)
1

Formula (22) also gives us an angle of misalignment if bias is known. This value can
also be used for algorithmic bias compensation. If we can obtain information from
other sources of primary information then it is also possible to use (19) to determine
the bias compensation.

Dynamic error and bandwidth

Let us consider movement of the sensitive element on a basis that rotates with
harmonic angular rate Q=Q, cos(M): Re{Qoei“}. The corresponding motion

equations of the sensitive element in this case, taking into account the assumption
that the frequency of angular rate is small compared to the operation frequency, are
given by
X, + 20K X, + (kf - dez)x1 = g,Q%, +QX,, (23)
%, +26,K,%, + (k2 —d,Q2)x, = q, cos(ot) — g, %, —d,Ox,.
When the amplitude of the angular rate is small (Q, <<k,), we can neglect the right-

hand terms in the second equation of (23) except for the excitation term. In addition,
centrifugal accelerations in this case are small and hence the equations reduce to

R, + 26 K X, +k2x, = g, Q%, +Qx,,
%, +2C,K, %, + kZX, = q, cos(ot)

Partial solution of the second equation in (24) is given by the following
X, (t)= Re{A, ' }= Re{A, e’ |

2C,00m

A2= q22 ) tg(@z)z_lgg 2

k2 (L-80? | +4¢250° ~ 8o
Then, the right-hand part of the first equation in (24) will be

—% Im{K2 (g,0+1)e™ + A, (g,0—1)e™ } f,=0th.

(24)
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Partial solution of (24) for the secondary oscillations x, yields a solution given by a
sum of two oscillations with frequencies f , =+ A:

x,(t)= Im{KMe"l‘Jr A,e"™ }
After substitution of the supposed solution in the first equation of (24) we can find
complex amplitudes of secondary oscillations

AL,=——t Q,9,(9,80+ 52) .

M 2K3ISk? — (Bt 1) + 26, 0ki(8w + 51)JL— 8w + 2¢,idw)’
where 81 =2/k is the relative frequency of the angular rate. Transition to real
amplitude and phase gives us

A11,12 =

Q,0,(9,5m+ 5))

2k {ok? — (3o 1) [ +4¢26Kk? (504 51.) }{(1— 50 ) + 4c§5w2}
Hence the partial solution for the secondary oscillations is given by
Xl(t) =A; Sin[((;) + k)t + (P11]+ A, Sin[((;) - 7L)t + (P12] : (25)
Here the phase shifts ¢,,,, are determined from the following expression
S, (5k* — (53 + 8)? )+ 8kE, (1 — 5 |3+ 51.)
A5KS G, L, (5 + 80) — (1— S0? 5k — (Beo+ 1))
SeoC, [0k — (50— 51)7 )+ 8kE, (1 - 50v° (B — 52.)
48k3 0, G, (50— 81)— (1— 8? )k — (Sw— 1))
Assuming that Q =const = 6L =0, we can obtain the amplitude and phase of the

secondary oscillations when the angular rate is constant. By making the following
substitutions: A, = A,(1£8A), 9., =, = Ao, the solution (25) will change to

X, (t) = 2A, [cos(rt + Ag)sin(wt + @, )+ SAsin(Lt + Ap)cos(ot + ¢, )].
After multiplying signal corresponding to the secondary oscillations on a carrier signal
sin(ot + ¢, ), the output will be as follows
x; (t)= A, [cos(rt + Ap)— cos(rt + Ap)cos(2wt + 2¢, )+
+8Asin(Lt + Ag)sin(2ot + 29, )]
The first item A, cos(M+A(p) is the signal proportional to the angular rate. All other

items have doubled frequency and must be removed by filtering after demodulation.
The output signal is distorted both in amplitude and phase. Phase distortion A¢ is

well predictable in a very wide range by means of obtained formulae. Amplitude error
caused by the harmonic angular rate is

0~ 2
5Q="1"" Lk 52, 26

tg ((Pll) =2

tg ((PlZ ) =2

where
_ 80°(3g, —2)+hok?[sk*(2+ g,) - 50 (59, - 6)]+ 8k *30?[4h?(g, —1)- 2-3g,
0, [(6k* + 500* — 26k250%h ||
h=1-2C7, Ay = A,(32=0).

Formula (26) gives only approximate results but for small values of the relative
frequency of the angular rate (0A <0.01) they are acceptable. The exact formula is
more complex and there is no reason to use it in this context. Graphs corresponding
to both approximate and exact dependence are shown in fig. 5. It is apparent that the
dynamic error increases if the ratio between the natural frequencies approaches

K,
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unity. In addition, it is possible to calculate a bandwidth if one assumes an
acceptable relative dynamic error 6Q,,,

max . (27)

Here, the bandwidth B, is measured in radians per second. The graph for the
bandwidth is shown in fig. 6.

0.0z
0.038
B
E=]
E 0.015 § 0.06
4] =
% 0.o01 En.m
o =]
=
A 0,005 0.0z
u] o
a 0.00z2 0.004 0O.006 0O.008 0.01 u] .5 1 1.5 2
Ancular rate freqguency &4 Matural frequency ratio dk
Fig. 5. Dynamic error as a function of Fig. 6. Relative bandwidth as a function
relative angular rate frequency of ratio of the natural frequencies
(dashed line 8k =1.05, solid line 8k =1.1) (69, =0.01)

Analyzing both fig. 6 and fig. 2, we can see that as the ratio of the natural frequencies
approaches unity (i.e. dk ~1), one will obtain the maximal sensitivity but the minimal
bandwidth. This effectively leads to a trade-off between these parameters. For open-
loop gyroscopes, it is acceptable to have a ratio of the natural frequencies in the
range of 0.9 — 0.95. For closed-loop operation, it is reasonable to have a ratio 6k ~1
for maximal sensitivity but providing necessary bandwidth by feedback.

Design methodology

The presented analysis of the sensitivity, linearity and bandwidth has resulted in
two main design trade-offs. First, in order to increase sensitivity, operational
frequencies have to be as low as possible, but at the same time there is a lower limit
that depends on scale factor linearity requirements. As a result, the natural frequency
of the primary oscillations can be chosen by means of formula (11) taking into
consideration acceptable value of the non-linearity and required measurement range.
Second, in order to obtain maximum sensitivity, both natural frequencies of primary
and secondary oscillations have to be of the same value, but it will result in a
minimum for the bandwidth. This trade-off can be resolved by formula (27) so that the
ratio of the natural frequencies can be designed to provide the necessary bandwidth.
As a result, such parameters as driving frequency, primary natural frequency (natural
frequency of the primary oscillations) and ration of the natural frequency can be
directly calculated and they have to be precisely implemented during sensitive
element design.

Testing results

Presented design methodology was used in designing of a micro-mechanical
CVG. In order to make design process efficient specialised design software tool was
developed. Based on the formulae presented in the paper the software allows not
only real-time observation of the mechanical parameters of the sensitive element but
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also all the main gyroscope performances during design process. After finishing of
the design, geometry of the sensitive element can be exported directly to the mask
file. Details of the in-house developed software are available from the authors. Some
photos of the fabricated sensitive element are shown in Figures 7 and 8.

Fig. 7. Part of the sensitive element Fig. 8. Driving comb-structures

Graph of EARS Gyro Qutput with Rotation Rate
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Rotation Ratw [dag's]

Fig. 9. Gyroscope rate testing results

Rate table tests of the fabricated micro-mechanical gyroscope were conducted
and results are shown in Figure 9. Note that the gyroscope was tested in the air (no
vacuum) as well as without on-chip electronics, which resulted in significant
measurement noise. Due to the low natural frequency and optimal design, sensitivity
to the angular rate nevertheless was indeed detected. Low level and non-linearity of
the response for the small angular rate is caused by the measurement noise.

Conclusion

The presented analytical approach to the design of the sensitive element of
Coriolis vibratory gyroscopes allows both prediction of the performances and
determination of the design parameters that are necessary to achieve high
performance of inertial instruments. Even though the proposed approach is applied to
sensitive elements, most of the dependencies can also be used for detailed analysis
of the dynamics of CVGs while designing control circuits. Due to the optimal design,
the sensitivity to the angular rate was detected even without vacuum packaging and
low-noise on-chip application specific integrated circuits.
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