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Abstract— optimal static filter of stochastic temperature 
disturbances is proposed in this paper. Filter is based on the 
model of the temperature variations influences via undesired 
cross-damping. Instead of temperature measurements its power 
spectral density is used along with the corresponding model of 
the moving object dynamics. 
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I.  INTRODUCTION 

One of the emerging application for Coriolis vibratory 
gyroscopes (CVG) is the development of miniature navigation 
and control systems for unmanned aerial vehicles (UAV). 
Providing significant miniaturization opportunities when 
fabricated using micro-machining technologies, CVG are 
commonly referred to as micro-electro-mechanical system 
(MEMS) gyroscope [1, 2]. As such, CVGs are used as an 
angular rate sensor along with accelerometers and 
magnetometers to provide attitude measurements in many 
different applications, including small UAVs [3]. 
Unfortunately, comparing to other implementations of CVGs, 
MEMS gyroscopes have relatively low scale factor and bias 
stability under influence of the operational environment [4]. 
One of the factors capable of producing zero rate output is 
temperature variations via cross-damping. Angular rate errors 
due to the temperature variations can be efficiently reduced if 
accurate temperature measurements are available on-board [5]. 
However, suitable temperature measurements are often not 
available in many systems, especially in miniature ones. This 
paper presents the research on possibility to improve 
performances of MEMS CVGs using statistical characteristics 
of the temperature influences in case when direct temperatures 
are not available. 

II. DYNAMICS OF THE SENSITIVE ELEMENT 

Motion equations of the CVG sensitive element in terms of 
amplitude-phase complex variables  
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where i equals 1 or 2 for the primary or secondary 
oscillations correspondingly, 0iA  and 0i  are the amplitudes 

and phases of the primary and secondary oscillations, and with 

respect to the cross damping and slowly varying amplitudes of 

secondary oscillations ( 02 A ) can be written as 
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  Here  1k  and 2k  are the corresponding natural 

frequencies, 1  and 2  are the dimensionless relative damping 

coefficients, 12  is the cross-damping coefficient between 

primary and secondary oscillations,   is the measured angular 
rate, which is orthogonal to the axes of primary and secondary 
motions, 2g  is the CVG design specific coefficient,   is the 

excitation frequency of the primary oscillations, and  
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is the constant (does not depend on time) complex 
amplitude of the primary oscillations. Looking at (1) one 
should note that temperature dependent cross-damping term is 
indistinguishable from the Coriolis term. Applying Laplace 
transformation to (1) and solving for the secondary complex 
amplitude, one can obtain expression for the measured angular 
rate as  
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Here main dynamics of CVGs is described by the 
simplified system transfer function 
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and the erroneous component of the angular rate caused by 
the temperature dependent cross-damping is 
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Transfer function in (4) can be further simplified using the 
same following assumptions that were used to obtain (3) [6]: 
natural frequencies are equal ( kkk  21 ) as well as relative 

damping coefficients (  21 ), and primary oscillations 

excitation frequency is 221  k . With these 

assumptions transfer function (4) becomes 
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Transfer function (5) allows efficient analysis of errors due 
to the temperature variations via cross-damping.  

III. MODEL OF THE TEMPERATURE RELATIED DAMPING 

Assuming that the cross-damping coefficient is a function 
of the temperature shift T from the calibration temperature, it 
can be approximated using polynomial as 
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Temperature related coefficients T
i  can be determined 

experimentally when ambient temperature is known and 
angular rate is absent. Nevertheless, in most of the cases we 
observe angular rate as the gyro output. In order to relate 
angular rate to the input cross damping, let us use steady state 
of the transfer function (5) as 
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Here the cross-damping model coefficients T
i can be 

determined from the experimental data.  

IV. STOCHASIC TEMPERATURE DISTURBANCES 

Analysing (2) one should note that temperature influences 
output of a CVG exactly like an angular rate and the 
temperature related output is undistinguishable from the 
angular rate measurements. In this sense temperature 
influences should be treated as a process noise or disturbances 
to the CVG system (see Figure 1). 

Fig. 1. CVG with added cross-damping disturbances 

 

W(s) G(s) 
 * 

 

x 

 

 

Here )(sW  is the system transfer function given by (3),  

 is the input angular rate, )(sG  is the optimal filter yet to be 

developed, x is the filtered output of the system, which in ideal 
case is equal to the angular rate , and   are the temperature 

related disturbances given by the following relation 
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Looking at the system in the figure 1, one can see that the 
only way to separate output resulting from the angular rate, 
from the output generated by the temperature disturbances is to 
take into account additional information about sources of the 
angular rate and the temperature disturbances.  

Assuming that CVG is installed on a maneuverable object, 
such as UAV or land vehicle, its power spectral density can be 
represented as the following low-pass model 
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Here B is the object bandwidth and  is the standard 
deviation of the object angular rate. 

It is apparent that the temperature variations are slow and 
therefore could be adequately represented by the following 
random walk model  
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Here  is the disturbance to angular rate power ratio 
(“noise-to-signal” ratio).  

Power spectral densities (9) and (10) can now be used to 
synthesise optimal filter, reducing errors caused by the 
temperature variations. 

V. OPTIMAL FILTER SYNTHESIS ALGORITHM 

Synthesis algorithm for optimal filter of stochastic 
disturbances for CVG as a system shown in Fig. 2 below has 
been presented in [7]. In the most general case, W(s) is the 
matrix of sensor transfer functions, G(s) is the matrix of filter 
transfer functions,  is the noise vector, r is the input vector, 
which then is measured by the sensor, and x is the system 
output vector, which in our case is an estimation of the input. 

Fig. 2. Optimal noise filtering 
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Error of this system is defined as a difference between the 
actual output of the system x and the ideal output, which is the 
given desired transformation H(s) of the input: 
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It is also assumed that signals x and r are the centred 
stochastic processes with known spectral densities )(sSrr , 

)(sS , )(sSr , and )(sS r . 

Performance criterion for the system is assumed in the 
following form: 
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Here R is the weight matrix, and )(sS  is the transposed 

matrix of the error spectral densities. Using Wiener-Khinchin 
theorem we can calculate the error spectral density from the 
system transfer functions and signal spectral densities as 
follows: 
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where “*” designates Hermite conjugate. By means of 
introducing new variables defined as 
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and substituting power spectral density (12) into (11), first 
variation of the performance criterion (11) with respect to the 
unknown filter related function 0G  will be 

 






j

j

dsTGGGTGtr
j

J )]()[(
1

**0*000  

Minimum of the performance criterion is achieved when 
first variation (13) is zero, which is achieved when 
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Here 0T  is the integral part of the matrix T , and T  is the 

part of the matrix T  that contains only poles with negative 
imaginary part. These matrices are the result of the Wiener 
separation procedure. 

 For the case of stochastic temperature disturbances, 
power spectral density )(sSrr  corresponds to (10), and spectral 

density )(sS  can be calculated from (9) using Wiener-

Khinchin theorem as follows: 
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Spectral density (15) along with the spectral density (10) 
can now be used to derive optimal filters based on the formula 
(14). After performing all necessary transformations, the 
optimal filter is found in the following form: 
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Optimal temperature errors filter (16) can now be used to 
reduce effect of the temperature variations on CVG 
performances. It is also important to note that filter (16) is a 
static transfer function and therefore does not require 
computational devices, and can be implemented using analog 
electronics as an application specific integrated circuit. 

VI. CONCLUSIONS 

Presented above approach to synthesis of the stochastic 
temperature disturbances filters resulted in a static filter 
capable of improving the performances of Coriois vibratory 
gyroscopes in case of absence of temperature measurements. 
Statistical characteristic of the temperature disturbances, such 
as its power spectral density, is used instead. The further 
analysis of the filter parameters optimisation and studying its 
performances is viewed as a possible future development of the 
current research. 
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